FLIR Systems completes strategic investment in AI sensor system developer

flir

FLIR Systems has made a strategic investment in CVEDIA, developers of machine learning applications that are used to efficiently enable sensor systems with artificial intelligence.

The strategic investment by FLIR in CVEDIA will create opportunities for the companies to accelerate the development of thermal spectrum-based deep learning training tools for use by FLIR and selected partners in integrating artificial intelligence into FLIR sensors and systems.

CVEDIA’s SynCity simulator software tool provides multi-modal, digital environments for autonomous system OEMs and related sensor makers to train its systems in a much faster, safer, and more affordable manner than by utilising traditional data collection techniques.

Story continues below
Advertisement

CVEDIA has developed SynCity to feature real-world physics, simulate a multitude of lighting and environmental conditions, and render objects such as people, animals, and automobiles in a manner that artificial intelligence systems interpret them as real and lifelike.

This produces high-quality datasets that are fed into customer neural network frameworks, materially shortening the time and easing the process of training these deep learning systems.

FLIR’s advanced thermal imaging sensors are an ideal technology for detecting living beings, seeing at night and through adverse environmental conditions, and in identifying industrial process abnormalities, making them a key capability in automotive, military, and industrial applications. The investment will also provide CVEDIA with growth capital to enable the expansion of their business.

“This investment in CVEDIA will enhance our ability to innovate sensing solutions that enable our customers to more quickly and accurately make their mission-critical decisions,” said James Cannon, president and CEO of FLIR.

“The addition of software algorithms that automatically inform a user or system of critical information is a valuable feature that augments the distinctive and rich data our sensors produce. We see wide applicability of these tools in our innovation of highly advanced solutions, and we look forward to the collaboration with the CVEDIA team.”

Tags : CVEDIAFlirJames Cannon
Emma Calder

The author Emma Calder

Leave a Response